ปริพันธ์ (อังกฤษ: integral) คือ ฟังก์ชันที่ใช้หา พื้นที่, มวล, ปริมาตร หรือผลรวมต่างๆ. เราอาจหาปริพันธ์ได้หลายวิธี แต่ไม่ว่าหาด้วยวิธีใด ก็จะได้ผลลัพธ์เท่ากันเสมอ. การหาปริพันธ์ (integration) เป็นกระบวนการที่ต่างจากการหาอนุพันธ์ แต่ก็มีความเกี่ยวข้องกัน
"ปริพันธ์" ต่างจากปฏิยานุพันธ์ แต่ทั้งสองมีความสัมพันธ์ที่ใกล้เคียงกัน ทฤษฎีบทมูลฐานของแคลคูลัสจะอธิบายว่าทำไมปริพันธ์กับปฏิยานุพันธ์ถึงเกี่ยวข้องกัน. ปริพันธ์แบบปฏิยานุพันธ์ คือ ปริพันธ์ไม่จำกัดเขต (indefinite integral) แต่ปริพันธ์ที่กล่าวถึงในบทความนี้ จะเป็นปริพันธ์จำกัดเขต (definite integral)
ปริพันธ์ของฟังก์ชันจำนวนจริงบวกที่ต่อเนื่อง และมีตัวแปร x อยู่ระหว่างจุด a กับจุด b ก็คือ พื้นที่ที่ถูกปิดล้อมด้วยเส้น x=a, x=b, แกน x และเส้นโค้ง f(x) ดังรูป. หรือจะกล่าวให้เป็นทางการขึ้นว่า ถ้าเราให้
แล้วปริพันธ์ของฟังก์ชัน f ระหว่าง a กับ b ก็คือการวัดขนาดของ S นั่นเอง
ไลบ์นิซ ได้ใช้เครื่องหมาย s ยาว แทนสัญลักษณ์ของปริพันธ์ ปริพันธ์ในย่อหน้าที่แล้วจะเขียนแทนด้วยสัญลักษณ์ โดยสัญลักษณ์ ∫ หมายถึงการหาปริพันธ์, a และ b หมายถึงขอบเขตของช่วงที่เราจะหา, f(x) คือฟังก์ชันที่เราต้องการหาปริพันธ์ และ dx แทนตัวแปรที่จะหาปริพันธ์ ซึ่งในอดีต dx จะแทน ปริมาณที่เล็กมากๆ และ s ยาว นั้นมาจากคำว่า "sum" ซึ่งแปลว่าผลบวก
ตัวอย่างเช่น ให้ f(x) = 3 ปริพันธ์ของ 0 ถึง 10 ก็คือพื้นที่ที่ล้อมด้วยเส้น x = 0, x = 10, y = 0, และ y = 3 ดังนั้น พื้นที่สี่เหลี่ยมรูปนี้จึงเท่ากับความยาวคูณความสูง ค่าของปริพันธ์จึงเท่ากับ 30
วิธีหาปริพันธ์ที่พื้นฐานที่สุด ก็คือใช้ทฤษฎีบทมูลฐานของแคลคูลัสในการหา ซึ่งมีขั้นตอนดังนี้
การหาปริพันธ์
1. กำหนดฟังก์ชัน f(x) และช่วง [a, b]
2. หาปฏิยานุพันธ์ของ f ก็คือ หาฟังก์ชัน F ที่ F' เท่ากับ f
3. จากทฤษฎีบทมูลฐานของแคลคูลัส จะได้ว่า
4. ค่าของปริพันธ์คือ F(b) − F(a)
สังเกตว่าปริพันธ์ไม่ใช่ปฏิยานุพันธ์ แต่ปฏิยานุพันธ์นำมาใช้หาปริพันธ์จำกัดเขตได้
Nenhum comentário:
Postar um comentário